Nodal signaling patterns the organizer.
نویسندگان
چکیده
Spemann's organizer plays an essential role in patterning the vertebrate embryo. During gastrulation, organizer cells involute and form the prechordal plate anteriorly and the notochord more posteriorly. The fate mapping and gene expression analyses in zebrafish presented in this study reveal that this anteroposterior polarity is already initiated in the organizer before gastrulation. Prechordal plate progenitors reside close to the blastoderm margin and express the homeobox gene goosecoid, whereas notochord precursors are located further from the margin and express the homeobox gene floating head. The nodal-related genes cyclops and squint are expressed at the blastoderm margin and are required for prechordal plate and notochord formation. We show that differential activation of the Nodal signaling pathway is essential in establishing anteroposterior pattern in the organizer. First, overexpression of cyclops and squint at different doses leads to the induction of floating head at low doses and the induction of both goosecoid and floating head at higher doses. Second, decreasing Nodal signaling using different concentrations of the antagonist Antivin inhibits goosecoid expression at low doses and blocks expression of both goosecoid and floating head at higher doses. Third, attenuation of Nodal signaling in zygotic mutants for the EGF-CFC gene one-eyed pinhead, an essential cofactor for Nodal signaling, leads to the loss of goosecoid expression and expansion of floating head expression in the organizer. Concomitantly, cells normally fated to become prechordal plate are transformed into notochord progenitors. Finally, activation of Nodal signaling at different times suggests that prechordal plate specification requires sustained Nodal signaling, whereas transient signaling is sufficient for notochord development. Together, these results indicate that differential Nodal signaling patterns the organizer before gastrulation, with the highest level of activity required for anterior fates and lower activity essential for posterior fates.
منابع مشابه
Nodal signaling and the zebrafish organizer.
Systematic genetic screens in zebrafish have led to the discovery of mutations that affect organizer function and development. The molecular isolation and phenotypic analysis of the affected genes have revealed that TGF-beta signals of the Nodal family play a key role in organizer formation. The activity of the Nodal signals Cyclops and Squint is regulated extracellularly by the EGF-CFC cofacto...
متن کاملThe zebrafish forkhead transcription factor FoxH1/Fast1 is a modulator of Nodal signaling required for organizer formation
BACKGROUND Signaling molecules related to the Nodal protein play essential roles in the formation and patterning of the gastrula organizer and the germ layers during vertebrate development. The forkhead transcription factor FoxH1 (also known as Fast1) is a component of the Nodal signaling pathway. Although different roles have been suggested for FoxH1, its specific function during development i...
متن کاملReciprocal Signaling between the Ectoderm and a Mesendodermal Left-Right Organizer Directs Left-Right Determination in the Sea Urchin Embryo
During echinoderm development, expression of nodal on the right side plays a crucial role in positioning of the rudiment on the left side, but the mechanisms that restrict nodal expression to the right side are not known. Here we show that establishment of left-right asymmetry in the sea urchin embryo relies on reciprocal signaling between the ectoderm and a left-right organizer located in the ...
متن کاملFormation of the Embryonic Organizer Is Restricted by the Competitive Influences of Fgf Signaling and the SoxB1 Transcription Factors
The organizer is one of the earliest structures to be established during vertebrate development and is crucial to subsequent patterning of the embryo. We have previously shown that the SoxB1 transcription factor, Sox3, plays a central role as a transcriptional repressor of zebrafish organizer gene expression. Recent data suggest that Fgf signaling has a positive influence on organizer formation...
متن کاملLefty-Dependent Inhibition of Nodal- and Wnt-Responsive Organizer Gene Expression Is Essential for Normal Gastrulation
During gastrulation, diffusible "organizer" signals, including members of the TGFbeta Nodal subfamily, pattern dorsal mesoderm and the embryonic axes. Simultaneously, negative regulators of these signals, including the Nodal inhibitor Lefty, an atypical TGFbeta factor, are induced by Nodal. This suggests that Lefty-dependent modulation of organizer signaling might regulate dorsal mesoderm patte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Development
دوره 127 5 شماره
صفحات -
تاریخ انتشار 2000